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The paper highlighted the use of advanced nonlinear modeling and subset selection tech-
niques in the construction of a good, predictive model for genotoxicity study of amines. Es-
sentials accounting for a reliable model were all considered carefully. Chemicals were
represented by a large number of CODESSA descriptors. Division of a whole sample into the
training set and the test set was performed by principal component analysis (PCA). Six
descriptors selected by the best multi-linear regression (BMLR) method in CODESSA program
were used as inputs to build nonlinear models, using advanced statistical learning methods
such as support vector machine (SVM) and projection pursuit regression (PPR). The models
were validated through three ways, i.e. internal cross-validation (CV), a test set and an inde-
pendent validation set. Analysis shows that nonlinear models produced better results than
linear models and PPR model outperforms the rest in the following order: PPR > SVM >
linear SVM > BMLR. In addition, the relationships between the descriptors and the muta-
genic behavior of compounds are well discussed.

Keywords: Quantitative structure-genotoxicity relationship; Amine; Principal component
analysis; Support vector machine; Projection pursuit regression.

Mutagenic potency is an important piece of information required by regula-
tory authorities all over the world, as a part of the safety evaluation process.
It is used for screening of substances (potentially hazardous to human
health) before their release into the market!. This potential is measured by
genotoxicity tests based on the fact that chemicals that show adverse ef-
tects when interacting with genetic material (DNA) of cells are known as
genotoxic?, and most human carcinogens are genotoxic in nature.
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Like other toxicological data, the genotoxicity of the existing chemicals is
incomplete because with presently available resources, thorough toxicologi-
cal testing of all chemicals is neither economically feasible, nor, for ethical
reasons (animal protection), justifiable. Therefore, effort has been directed
at developing low cost and efficient approaches for the prediction of geno-
toxicity. Methodologies based on quantitative structure-activity relation-
ships (QSAR) study have the potential to fill above requirements and
genotoxicity related (Q)SAR models are currently being integrated into
emerging data-gap filling applications, such as the OECD’s QSAR Applica-
tion Toolbox3. A good example is the knowledge- and rule-based expert
systems (ES), e.g. Deductive Estimation on Risk from Existing Knowledge
(DEREK)#, which uses structural alerts in combination with pattern recogni-
tion routines to identify substructures associated with specific toxic effects.
This method is characteristic of transparency in the form of structure alerts
that have a straightforward interpretation. However, it cannot provide pre-
diction for non-positive structures®. Apart from ES, genotoxicity-based
(Q)SAR studies have been carried out for a diverse group of chemicals. Aro-
matic and heteroaromatic amines, as a class of widespread and ubiquitous
environmental pollutants, have gained increasing interest in such research.
A significant number of studies have been carried out on them alone apply-
ing different kinds of techniques ranging from classical multiple regression
analysis to machine learning (neural networks®’/pattern recognition/statis-
tical learning methods®) to two-dimensional and three-dimensional QSAR
methodologies (e.g. comparative molecular field analysis (CoMFA))°.
Genotoxicity was correlated with different descriptors such as log P, Exomo
and E; ;o by Debnath et al.!°, topological descriptors by Basak et al.!l12,
atomic surface areas, coulombic and electron exchange energies by
Katritzky et al.!3, Dragon descriptors by Gramatica et al.'* and E-state indi-
ces by Cash et al.'>, etc. These works were also well reviewed by Benigni'®17,
Vracko'8, and Gramatica'® very recently.

In the present research, QSAR study was carried out to predict the geno-
toxicity of 124 aromatic and heteroaromatic amines. The same data was
also studied by Cash et al.!® using E-state indices with the conclusions that
(i) it is important to understand the difference between a model’s fit and
a model’s predictive ability and (ii) training set statistics and internal vali-
dation techniques alone may be very misleading when trying to evaluate
the true predictive accuracy of a model, thus highlighted the need to per-
form an external validation of a model to assess its true predictive ability.
This opinion was recommended by other researchers, e.g. Zefirov et al.?°,
Tropsha et al.?! and Gramatica et al.??, and requested also by the OECD
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principles3. In addition to the above arguments, what aroused our curiosity
of this work is the big difference between the model’s fit ability and pre-
dictive ability in terms of squared regression coefficient (R?) given by the
authors, i.e. goodness-of-fit parameters R*> = 0.78 for model 1 (a seven-
descriptor equation) and 0.77 for model 2 (a six-descriptor equation), with
the respective predictive R?> = 0.27 (model 1) and 0.44 (model 2) for test
sets. According to the authors, these should be contributed to the possible
over-fitting of models'>. Based on our experience with these, however,
what to doubt first should be the reliability of the division of samples (i.e.
data splitting into training set and test set) rather than the possible over-
fitting supported by the authors!>. In other words, the training set was not
representative of the test set. To support this point of view, a principal
component analysis (PCA) was performed in the present study to help us
inspect the two models by Cash et al.!> and further understand the data dis-
tribution as well. PCA was also used for subset design in this study, in com-
parison to another famous subset selection method, i.e. Duplex, to generate
a representative training set. The widely used CODESSA descriptors, which
encode various aspect of structural information, were calculated to provide
information space for these purposes.

In addition, it is well-known that chemicals exhibit toxicity via different
mechanisms of toxic action and, as Cronin and Schultz?? pointed out, that
biology and the modeling of biology is a nonlinear phenomenon in essence
and that always expecting linear relationships in biological modeling is not
realistic. As mentioned previously, neural networks have been used in
genotoxicity modeling for amines®’. Apart from neural networks, a number
of nonlinear modeling methods have been developed in the field of statis-
tics to handle nonlinearity exhibited in a given data set. In this study, sup-
port vector machine (SVM) and project pursuit regression (PPR) were
employed for this purpose.

The developed models were validated through three ways, i.e. internal
cross-validation (CV), a test set and an independent validation set in terms
of R? and the root mean squared error (RMSE), which is calculated as the
root square of the sum of squared errors in modeling or prediction divided
by their corresponding total number. All models were compared with re-
spect to above two statistical parameters in order to determine a reliable
predictive model for genotoxicity prediction. The preferred model should
have the highest statistical parameter values (i.e. highest R?/smallest RMSE)
and the most balanced results (i.e. very similar R?/RMSE values) for training
and test set chemicals, highlighting the model’s generalizability?*. It was
also explored applying n-fold cross-validation procedure and the results
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were compared to those by training set/test set procedure to verify its stabil-
ity.

MATERIAL AND METHODS

Data set: The data set reported in the study of Cash et al.!> was used,
which involves 124 aromatic and heteroaromatic amines. Mutagenic po-
tency was expressed as log reversions per nanomole of compound (LogR) in
the strain Salmonella typhimurium TA98+S9 with the addition of an exoge-
nous metabolic activation system. The structures as well as mutagenic po-
tency marked as LogR are shown in Supplementary Material S1.

Descriptors generation and selection: Overall, 618 descriptors classified as
constitutional, topological, geometrical, electrostatic and quantum chemi-
cal descriptors were generated using CODESSA package?’. These descriptors
encode information about the connections between atoms, shape, branch-
ing, symmetry, distribution of charge, and quantum-chemical properties of
the molecule. Before calculation of the descriptors, the molecules were opti-
mized with AM1 method in Hyperchem 6.02°, with no symmetry con-
straints imposed and applying a gradient norm limit of 0.1 kcal/mol as a
stopping criterion.

Many of the calculated descriptors carry redundant or highly correlated
information and their existence would result in a chance correlation during
the construction of the model. Therefore, once descriptors were generated,
feature selection should be performed to reduce the original pool of de-
scriptors to an appropriate size and choose a subset of descriptors that is
significantly correlated with the property of interest. The selection includes
objective procedure and subjective procedure. In objective feature selection,
the independent variable (i.e. descriptors) alone was used to filter out use-
less ones employing identical test, pairwise correlation test, and vector
space descriptor analysis, etc.?”. The remaining descriptors were then re-
duced by subjective feature selection to search for an information-rich sub-
set of descriptors. Here, the best multi-linear regression (BMLR) method in
CODESSA was used for this purpose. This method implements the follow-
ing strategy to search for the multi-parameter regression with the maxi-
mum predicting ability. It commences by correlating the given property/
activity employing two-parameter regression with pairs of orthogonal
descriptors (default value R? of the inter-correlation less than 0.1). The
descriptors sets with highest correlation coefficients are chosen to perform
higher order regression. Further inclusion of non-collinear descriptors (de-
fault value R? < 0.6) in the regression is made, one descriptor after another,
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on the basis of the improved Fisher criterion F at a given probability level
upon successive addition of descriptors?®. The correlation of descriptors in
the model can thus be efficiently avoided.

Support vector machine for regression (SVR): SVM algorithm was proposed
by Vapnik and co-workers in 1995 and detailed description can be found in
a tutorial®®. Briefly, this method was designed around the computation of
an optimal separating hyperplane which provides minimum expected gen-
eralization error in a multi-dimensional space called “feature space”. By the
use of a kernel function, the input data is first mapped into the feature
space and then linear regression is performed in this space. The elegance of
using kernel function lies in the facts that one can deal with feature spaces
of arbitrary dimensionality without having to compute the map explicitly
and SVM can actually locate the hyperplane without ever representing the
feature space explicitly. In the function estimation problems, the radial ba-
sis function kernel is most commonly used because of its effectiveness and
speed in the training process.

Projection pursuit regression (PPR): For many problems with high-
dimensional data, the most common practice is using dimension reducing
transformations such as linear projections to project the original data into
a lower-dimensional space, line or a plane, etc., to try to find the intrinsic
structure for visual inspection. More precisely, given a data set X = (X4, ...,
X,), X € IRk are k-dimensional matrix (k x n), where k is the number of ob-
served variables and #n is the number of units, and an orthonormal matrix
o(m x k). Then a matrix with a dimension (m x n) is constructed by multi-
plying matrix a(m x k) to X(k x n) and represents the coordinates of the
projection data onto the m-dimensional (m < k) space spanned by the rows
of o. As there are infinitely many projections from a higher dimension to
a lower dimension, it is important to have a technique to pursue a finite se-
quence of projections that can reveal the most interesting structures of the
data. “Projection pursuit” (PP) presented by Friedman and Turkey is such
a powerful tool that combines both ideas of projection and pursuit3®3! and,
therefore, can overcome the cause of dimensionality. Briefly, its basic idea
was to assign a numerical index (named a PP index I(a) to measure the “in-
terestingness” of projection; the larger the index value, the more interest-
ing the projection is) to every projection and then maximize the index, via
numerical optimization by a PP algorithm, over all possible o. For an ob-
served pair (X,Y) of random variables, where X e IR is a k-dimensional vari-
able and Y € IR is a response, projection pursuit for regression (PPR) aims to
approximate the regression function f{x) = E(Y|X = x) by a finite sum of ridge
functions
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where o; are m x n orthonormal matrices, p is the number of ridge func-
tions. PPR model can be used to approximate a large class of function by
suitable choices of a; and g;. It was found that the largest of the first several
maxima from Friedman’s PP algorithm is often very close to the global
maximum?2. Therefore, this algorithm was used in this study, where g;
is found by smoothing operation that entails a back-fitting3®3!. SVM and
PPR are conducted using calculation programs written in R-file based on R
script.

RESULTS AND DISCUSSION

Inspection of two models by Cash et al.!®: Training set statistics and internal
validation results for two linear models by Cash et al.!> were good and simi-
lar to each other, with goodness-of-fit parameters R? = 0.78 and Rzadj =0.76
for model 1 and 0.77 and 0.75 for model 2, respectively. However, for test
set, the respective predictive R> was only 0.27 and 0.44. Neither model 1
nor model 2 showed acceptable predictive accuracy when subjected to the
external validation though the internal validation statistic (Q% o) indi-
cated that both models would be expected to predict LogR well. Closer ex-
amination of test set results revealed that only three of the eight descriptors
enclosed in model 1 were represented in the test set, indicating that the test
set may not have been adequately representative of the training set. It
means that many compounds in the test set may have been outside the
valid prediction space of the training set. On the contrary, an increase in
the predictive R? for test set (from 0.27 in model 1 to 0.44 in model 2) dem-
onstrates that the improvement of the valid prediction space can result in
corresponding improvements of the model’s predictive ability, as subsets in
model 2 were generated based on the adjustment of subsets in model 1 con-
sidering the relationship between the descriptors and the structure of
chemicals in the test set. Nevertheless, the improvement was not so signifi-
cant and a predictive R? of 0.44 for the test set indicates that it did not ade-
quately predict LogR yet.

Based on above observation, there is reason to believe that the big differ-
ence between fit ability and predictive ability of models by Cash et al.’®
should be, or at least to a great extent, attributed to data separation
amongst the chemicals. In other words, compounds in the test set are
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underrepresented in these models, the chemical ‘space’ - or extent of chem-
ical diversity represented by the molecules used to construct the model - is
enriched with rather different structures. With the objective to prove this
hypothesis, a principal components analysis (PCA) was performed within
the calculated CODESSA descriptors space for the whole data set. The calcu-
lated principal components (PCs) can be used to derive scores to display
most of the original variations in a smaller number of dimensions. These
scores can also allow us to recognize groups of samples with similar behav-
ior. Details about PCA can be found in ref.33.

Here, PCA gives 34 PCs with eigenvalues > 1. Of them, the first three sig-
nificant PCs explain 56.73% of the variation in the data (26.94, 15.85 and
14.94%, respectively). The distribution of compounds over the first three
PCs information space is shown in Fig. 1. As can be seen in this figure, all
124 chemicals are basically formed into two groups over the PCs space; one
group is composed of Anilines and Quinolines and another one consists of
the rest chemicals, i.e. Biphenyls, Fluoranthenes, Naphthalanes and Phena-
zine etc., with only few anilines fall into the later.

Spatial distribution of compounds in model 1 (denoted as A for test set
compounds in Supplementary Material S1) by Cash et al.!> over the first
three PCs space is shown in Fig. 2. As can be seen, the training set is very
different from those in the test set and cannot represent the test set at all.
Combined with Fig. 1, it is obvious that all Anilines came into the training
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set accounting for more than one third of the parts that compose the train-
ing set while the test set contains only biphenyls, fluoranes and naph-
thalanes. it is without the question that the unbalance of the components
in two subsets contributed much to the big difference between fit ability
and predictive ability of model 1.

As for compounds in model 2 (denoted as B for test set compounds in
Supplementary Material S1) by Cash et al.!>, each set seem to be relatively
balanced over the space of the PCs (not shown). The difference between the
training set and the test set are not so obvious as in Fig. 2 but it is still not
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well enough as the training set does not consist of representatives of the
most dissimilar structures (e.g. No. 48 3,5-diisopropyl-4-aminobiphenyl,
No. 76 4,4-methylenebis(o-isopropylaniline) and No. 93 7-adamantyl-
2-aminofluorene), thus affecting the applicability of subset splitting. On
the other hand, it can be used to explain the difference between the
model’s fit ability and predictive ability and, to some extent, also the im-
provements of the predictive ability of model 2 over model 1.

To demonstrate it more clearly, in the present study new QSAR models
were built for same subsets by Cash et al.’> using CODESSA descriptors. The
results were very similar to those by Cash et al.’>. All linear models demon-
strated high ability in predicting genotoxicity of the training set com-
pounds, with R? ranging from 0.7344 (two-descriptor equation) to 0.8672
(seven-descriptor equation) for data set 1 and 0.7639 (two-descriptor equa-
tion) to 0.8189 (five-descriptor equation) for data set 2, respectively. With
respect to the test sets, the predictive results are unacceptably low with a
highest predictive R? value of 0.0604 and 0.3021, respectively. Inspection of
the detailed predicted results showed that compound No. 93 (7-adamantyl-
2-aminofluorene) affects the test set statistics significantly. The highest pre-
dictive R? for two test sets would be increased to 0.4493 and 0.609, respec-
tively, after discarding this compound from the test set. Nevertheless, the
unbalanced results are still unacceptable.

The above observation demonstrates that data separation (subset selec-
tion) is of crucial importance in the development and validation of reliable
QSARs. The quality of the prediction depends highly on the data set used to
develop the model and similarity between the training set and the test set
can affect the predictive ability of the models dramatically. The rational di-
vision of the subsets should satisfy that, on one side, the diversity of the
training set, which is a necessary condition for the construction of a QSAR
model applicable to further compounds of interest in the same chemical
domain and, on the other side, the closeness of the representative points of
both the training set and the test set in the descriptor space that ensures a
proper validation of the model’. This can be shown intuitively over PCs
space occupied by the entire data set to some extent. Therefore, what need
us to do is to try different splitting methodologies to generate a representa-
tive training set and test set. Before that, 20 chemicals were selected ran-
domly to form an independent validation set to check the generalization
ability of the developed model: by selection of every sixth point starting
from compounds No. 3 (4-chloroaniline).

General approaches for selecting representative training set samples in-
cluding random selection, D-optimal concept, Kenstone algorithm, Nes’
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cluster analysis and Duplex algorithm, etc. Amongst them, Duplex seems to
be the best way to select representative training and test sets in a validation
context and its principle as well as the treating procedure are described in
literature34. In addition to above approaches, PCA was another very useful
method proved by our previous works to assist the data splitting3®3°. De-
sign of the training set is performed with respect to the PCs by selecting a
subset of substances that are most efficient in spanning the substance (or
PCA model) space. When the number of PCs is less than three, it is often
sufficient to select samples manually from visual inspection of score plots.
This method, together with Duplex algorithm, was used in the present
work to generate different QSAR subsets with two aims in mind: first, to
further explore the importance of data splitting on the performance of the
QSAR model and, second, to compare the efficiency of two methods for this
specific case. According to general separation ratio®’, the rest 104 com-
pounds were split into 80% for the training set (80 compounds) to develop
models and 20% for the test set (24 compounds) to evaluate the model per-
formance.

BMLR method in CODESSA program was used to select most relevant
descriptors and construct QSAR linear models. For each data set, series of
linear models containing different number of descriptors were generated.
To avoid the “over-parametrization” of the model, an increase of the R?
value of less than 0.02 was chosen as the breakpoint criterion33.

Linear models based on Duplex method: Predictive R? for test set by all mod-
els are less than 0.26, indicating that the models have rather poor predic-
tive accuracy though fit for the training set are very satisfactory. The
optimum model is a five-descriptor linear equation given R? = 0.8128 and
0.244, and RMSE = 0.7789 and 1.8878 for the training set and the test set,
respectively. In this sense, it means that the descriptors in the models,
which are structural features selected out for compounds in the training set
and therefore can reflect important structural information related to the
studied property (in this case, it is LogR of the chemicals) in the training
set, cannot cover the whole range of the compounds in the test set. With
respect to the two models in literaturel$, there is reason to doubt the sub-
set selection. Comparison of spatial distribution over PCs space revealed
that the training set does not consist of representatives of the most dissimi-
lar structures (as in model 2 in ref.!%), thus affecting the applicability of
data set splitting.

Compound No. 93 (7-adamantyl-2-aminofluorene) affects the test set sta-
tistics significantly again. Discarding this compound from the test set re-
sulted in improvements on the predictive R?, with the highest R?> = 0.617. If
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we transfer this compound into the training set and develop new models
using same procedure, the predictive statistics for new test set would in-
crease. However, the results are still not good; the highest predictive R?
0.463 corresponding to a six-descriptor linear equation (training set R? =
0.8170). In addition, in both cases, models were not stable especially for
the test set statistics. From above observation, it is concluded that models
based on Duplex subset selection algorithm were not satisfactory in this
case.

Linear models based on PCA subset design method: Subset selection based
on PCA can be checked by observing their spatial distribution over the first
three PCs information space (Fig. 3). It is seen that the training set covers
evenly the PCs space and that the compounds of the test set are close to
those of the training set with the most dissimilar compounds enclosed into
the training set; thus allows predictions to be made by interpolation and
not extrapolation out of the domain of the particular QSAR model®°.

Best multi-linear regression models including up to eight descriptors were
obtained; details are described in Supplementary Material S2. According to
0.02 break criterion®® during the construction of the model, a six-desriptor
linear equation was considered as the optimum model to correlate logR to
structural features.

The model is presented in details in Table I. Analysis of the descriptors
correlation matrix indicates that no obvious correlation exists between
these descriptors and that the obtained model has statistic significance.

TABLE I
Linear model based on data splitting and BMLR feature selection

Descriptor Meaning of descriptor B Std. error  Beta t-test
constant 213.6157  58.5056 3.6512
RNy realtive number of rings 31.4574 6.2179 0.4874 5.0592
Ngg number of benzene rings 1.6038 0.2846 0.6253 5.6360
2cic complementary information -0.0647 0.0128 -0.6782  -5.0412

content (order 2)
ERpaxcn  maximal resonance energy for -18.4986 5.1885 -0.2789  -3.5653

a C-H bond

#TMEI total molecular electrostatic -1.6448 0.3941 -0.4102 -4.1731
interaction/# of atoms

I principal moment of inertia C -137.1430  22.3205 -0.5706  -6.1443
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Using this model, the genotoxicity of each compound was predicted;
shown in Supplementary Material S1. No outliers were found according to
three times standard deviation criterion. Correlations between predicted
and observed genotoxicity reveal that both fit ability and predictive ability
were good with R? = 0.749 and 0.75, and RMSE = 0.8949 and 0.9854 for the
training set and test set, respectively. For the whole data, it can correctly
predict 75% of the variance with RMSE = 0.9166. In addition, a scrambling
procedure was applied to check the chance correlation during the model
construction®’. Nine-trivial randomizations resulted in an average R? value
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of 0.112 (shown in Supplementary Material S2), which is far less than 0.75
by BMLR model and thus showed the breakdown of predictive power of the
model. This was accepted as a proof of validity of the BMLR model we de-
veloped.

Compared to linear model based on Duplex algorithm, both fit ability
and predictive ability of this model were satisfactory. It indicates that
descriptors enclosed into the model can describe the whole data set rela-
tively well. However, none of the descriptors showed individual strong lin-
ear relationship with logR. In this sense, it means that these descriptors
work together in a complex way to correlate with the mutagen potency of
compounds.

For the purpose to investigate possible nonlinearities and to avoid the
limitations imposed by the multi-linear method, nonlinear methods such
as SVM and PPR were used to perform further QSAR study. The same de-
scriptors selected by BMLR method were used. In addition, considering the
differences between groups in the training set, a six-fold cross-validation
procedure was performed on the whole data set*!. The averaged results were
compared to those predicted by each nonlinear model.

SVM model based on PCA subset design method: To evaluate whether the re-
lationship is really nonlinear, linear SVM utilizing linear kernel function as
well as nonlinear SVM utilizing RBF kernel function were used to develop
linear SVM model and nonlinear SVM model, respectively. The quality of
SVM depends on a good choice of parameters combination, i.e. the regular-
ization parameter (cost, C), the nature and the parameters of the kernel
function. As parameters influence each other, a systematic grid search
method was utilized to determine the best set, using the minimum mean
squared error (MSE) of leave-one-out (LOO) cross-validation of the training
set as the optimal condition.

For nonlinear SVM modeling, the final optimal model was determined as
C = 800, y = 0.02 and & = 0.24. This model gives R?> = 0.8692 with RMSE =
0.6521 for the training set and predicted R? = 0.8390 with RMSE = 0.7270
for the test set, respectively. In the case of linear SVM modeling, systematic
grid search process determined C = 50 and & = 0.0032 as final optimal
model parameters resulting in R? = 0.7595 and 0.7874, and RMSE = 0.8951
and 0.8962 for the training and test set, respectively.

Direct comparison of the statistical parameters and predictive power of
three models we developed above (BMLR, linear SVM and nonlinear SVM
models) is feasible and it appears that the model quality of linear SVM
model is comparable to that of BMLR model; both are poorer than results
by nonlinear SVM model. The detailed predicted results are listed in

Collect. Czech. Chem. Commun. 2011, Vol. 76, No. 4, pp. 243-264



256 Ren, Zhao, Yao:

Supplementary Material S1. A closer examination of the residuals reveals
that, generally, the data points from the nonlinear SVM have smaller
deviations from the regression line than the linear models. In this sense, it
implies that the factors influencing the genotoxicity were complex and not
all of them relate to genotoxicity in a linear fashion. On the contrary, the
relationships between the structure and genotoxicity are, in principle, non-
linear and nonlinear methods are more capable of recognizing this non-
linearity.

PPR modeling based on PCA subset design method: The PP algorithm pro-
posed by Friedman was used to construct PPR model and the quality of PPR
modeling depends on the choice of parameters, i.e. “nterms”, “optlevel”
and “span”. “nterms” amounts to the number of variables in the model;
in this case, nterms = 7. “optlevel” is an integer from O to 3. It means the
levels of optimization which differ in how thoroughly the models are refit-
ted during this process. “span” defines the fraction of the observations in
the span of the running lines smoother. Thus, the parameters need to be
determined in this study is “optlevel” and “span”. As there are no clear
guidelines for selecting the optimum set of theoretical parameters, the only
practical way of finding the above two terms is through extensive experi-
ments optimizing the PP index.

The final optimal set was determined as “optlevel” = 1 and “span” = 0.22,
respectively. Compared with the nonlinear SVM model developed above,
for the training set, the PPR model gave better fit with an increased R? of
0.8848 and decreased RMSE of 0.6078. The improvement indicates that the
training set is described more accurately and the PPR model is expected to
be a better predictor for genotoxicity than nonlinear SVM model. As ex-
pected, the predictive ability of this model was also satisfactory with the
predictive R? value increased to 0.8440 and RMSE value dropped to 0.7423,
indicating the good generalization capability of the PPR model. This is also
demonstrated in Fig. 4, which shows the graphic presentation of the rela-
tionship between the experimental and predicted logR by BMLR, nonlinear
SVM and PPR modeling. As can be clearly seen, the data points from the
nonlinear models show smaller deviations from the regression line than the
BMLR model; the PPR model performs best. Predictions for following com-
pounds, i.e. No. 27 (4-chloro-1,2-phenylenediamine), No. 59 (3,5-diethyl-
4-aminobiphenyl), No. 81 (7-aminofluoranthene), No. 93 (7-adamantyl-
2-aminofluorene), No. 96 (1-n-butyl-2-aminofluorene), No. 115 (2,7-di-
aminophenazine), No. 120 (1-aminopyrene) by PPR model are much better
than those by BMLR and SVM. For compound No. 106 (3-amino-
phenanthrene) all models give similar prediction with deviations more
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than 1.6 log unit. Besides, the largest deviation by PPR model is 1.74 log
unit (i.e. compound No. 6 (4-bromoaniline)); whereas the largest deviation
by BMLR and SVM are 2.82 and 2.28 log units (for compound No. 115
(2,7-diaminophenazine)), respectively.

Generally, nonlinear models produced better results than linear models
and PPR model outperforms the rest in the following order: PPR > SVM >
linear SVM > BMLR (also shown in Table II). Detailed analysis reveals that
improvements on test set are more significant, indicating best generaliza-
tion ability of PPR model. In particular, within an absolute error of 1 log
unit, PPR can correctly predict genotoxicity for 87.5% compounds in the
test sets; while for the BMLR and SVM, the respective proportion were
66.67 and 79.17%, respectively (shown in Fig. 5).

Based on above observations, we have such conclusions that (i) PPR
model is clearly superior both in fitness and in prediction performance for
this end point of interest and, (ii) PPR model can simulate the nonlinear re-
lationship within the data set investigated more accurately. Besides, PPR is
computationally quite feasible and simple and it takes much less time to
convergence compared to SVM model. Since the averaged R? value by
six-fold cross-validation procedure was very similar to that obtained based
on the training set/test set (shown in Supplementary Material S2), it can be
concluded that the models we developed are stable. Finally, the independ-
ent validation set of 20 compounds was utilized to evaluate the model’s
generalization ability. Predicted R> and RMSE for independent validation

#120

#115

o by BMLR
@ by nonlinear SVM
by PPR

Predicted mutagenicity in log unit

T T T T T T 1

T T
-4 -3 -2 -1 0 1 2 3 4 5
Experimental mutagenicity in log unit

FiG. 4
Comparison of the predicted results for whole dataset by BMLR, nonlinear SVM and PPR
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set are 0.8350 and 0.6440, respectively, indicating the good generalization
ability of PPR mode we developed (shown in Table II). For the convenience
of comparative analysis, the external validation results for other three mod-

TaBLE II

Statistical parameters for all models we developed in the present study

Statistical Data set Number of BMLR Linear SUM PPR

terms compounds SVM

R? test set 24 0.7500 0.7874 0.8390 0.8440
training set 80 0.7490 0.7595 0.8692 0.8848
whole set 104 0.7471 0.7640 0.8590 0.8730
(train+test)
independent 20 0.7800 0.7893 0.8155 0.8350
validation test

RMSE test set 24 0.9854 0.8962 0.7758 0.7423
training set 80 0.8949 0.8951 0.6521 0.6078
whole set 104 0.9166 0.8953 0.6826 0.6300
(train+test)
independent 20 0.7054 0.6708  0.6521 0.6440

validation test
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70 '
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Proportion for test set in %
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Proportion of compounds in test set within a given deviation from the experimental logR by
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els, i.e. BMLR, linear SVM and nonlinear SVM, were also listed in this table.
It is obvious that utilizing PPR as modeling technique to predict geno-
toxicity is a good choice.

Interpretation of the descriptors: Apart from the acceptable predictive ability
of the studied property/activity, physicochemical interpretation of the se-
lected descriptors is another prerequisite of a good predictive model. In
other words, the constructed model should provide good prediction but
also help investigate the underlying physical phenomenon and identify the
key molecular features associated with the property/activity of interest as
well. For toxicity topics, it might help provide some chemical clues for
the identification of risk chemicals from a large group of structurally re-
lated molecules with less cost compared to the animal test. Nevertheless,
the mechanistic interpretation of descriptors is seldom easy, especially for
a biochemical mechanism that always involves toxicity topics and for high
heterogeneous data set.

As described previously, the descriptors were selected into the BMLR
model through a systematic way and the scrambling procedure does not in-
dicate presence of chance correlation during the construction of models.
On the basis of such observations, there is reason to believe that by inter-
preting the descriptors in linear model, it is possible to gain some insight
into factors that are likely to affect the genotoxicity. In this study six de-
scriptors were found to be important to genotoxicity. Of them, two are con-
stitutional (RN and Nyg), one is topological (*CIC), and the rest are
quantum-chemical (ERy,y .y, #TMEI and 1), respectively. These de-
scriptors encode different structure information affecting the mutagenic
interaction mechanism and the significance of each descriptor in the model
can be checked with corresponding t-test values.

RNy (relative number of rings) is the proportion of ring to all atoms in
a molecule. Inclusion of this descriptor into the model is not surprising at
all as the compounds under investigation are aromatic and heteroaromatic
amines. It plays important role on genotoxicity in a similar way to another
constitutional descriptor, Ny (number of benzene rings). Ngp is approxi-
mately proportional to the area of hydrophobic aromatic hydrocarbon art
of the molecule and can be therefore related to the hydrophobicity of the
(poly)cyclic compounds as well2. This descriptor has also been found of
significant importance to genotoxicity of aromatic and heterocyclic amines
in other publications and the authors concluded that the size of the ring
system can affect the genotoxicity in various steps in genotoxicity me-
chanism, but most probably it affects the penetration through the bio-
membraness!343.
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2CIC (secondary complementary information content) is defined in ref.*4.
It encodes the information on size and degree of branching of a molecule.
In other words, it represents the difference between the maximum possible
complexity of a graph and the realized topological information of the
chemical species as defined by the information content. The molecular
polarizability strongly depends on the size of molecule. The polarizability
values have also been shown to be related to the hydrophobicity and the
higher order polarizability terms are also known to characterize the electro-
philic properties of the molecule*®. Therefore, the specific information on
the complexity of a topological graph and skeletal variations of the chemi-
cal species may lead to difference of the steric property and the hydropho-
bic of the compounds. This descriptor shows the largest negative influence
on the genotoxicity of the amines and it is shown in this work that the
genotoxicity of amines decrease with growing steric demand of substitu-
ents. For example, derivatives of compound No. 84 (2-aminofluorene)
substitued by different size of alkyl group in the ortho position of the ami-
no funtionality with growing steric demand, i.e. compound No. 91
(1-ethyl-2-aminofluorene), compound No. 97 (1-i-propyl-2-aminofluorene),
compound No. 96 (1-n-butyl-2-aminofluorene) and compound No. 94
(1-t-butyl-2-aminofluorene). Similar trend can also be seen for ortho
substitued 4-aminobiphenyl derivatives. For derivatives with substituents
“far away” from the amino functionality, this is also the case, e.g. com-
pound No. 95 (7-methyl-2-aminofluorene), compound No. 94 (7-tert-
butyl-2-aminofluorene) and compound No. 93 (7-adamantyl-2-amino-
fluorene), etc. Similar observations can be found in literatures*6-48,

ERyf,x c.p (max resonance energy for a C-H bond) is an energy partition
term related to the site in the molecule where the resonance between the
carbon and hydrogen is the strongest. It also represents the kinetic energy
and electronuclear attraction energy associated with a charge distribution
that lies between two atoms. The presence of this descriptor in the model
may be related to the formation of highly reactive radical centres in the
aromatic systems that affect the reproductory system of cell*®. Another
energy partition term related descriptor is #TMEI (total molecular electro-
static interaction/# of atoms), which characterizes the total energy of the
molecule in electrostatic energy scales and describes the electrostatic fea-
ture of the molecule.

The principal moment of inertia C, I, characterizes the mass distribution
along the longest rotational axe of the molecule®® and thus provides infor-
mation on rigidity of a molecule. It also shows the lowest diameter of the
molecule, which has effect to the penetration through the bio-membranes.
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I is useful for distinguishing between the isomers®’, especially the posi-
tional isomers.

In conclusion, these structural factors can be classified into three groups,
related to bulk properties of the compound described through size and
shape (RNg, Ny, and 1) and skeletal variations and complexity (?CIC) and
the reactivity described through the energy partition term (ERy,y cn,
#TMEI). A closer inspection shows that descriptors with highest R? are
related to the bulk properties of the compounds and they, together with
the hydrophobicity property, are major contributors in the whole data set’s
genotoxicity. They can influence the transportation process of mutagenic
compounds to the active site, particularly the penetration through the
bio-membranes. This is in well accordance with the scientific conclusion of
other papers treating same topics*2.

The mutagenic action refers to the interactions of the molecule with the
cell reproductory system. According to general mechanistic concepts, the
interactions include the non-specific interactions and specific interactions.
The former usually determines the solubility of a compound in the cell en-
vironment, penetration through the bio-membranes and hydrophobicity,
while the latter involves specific interactions with certain mutagenic sites
(electrophilic, nucleophilic or alkylation) of the molecule (parent
mutagenic compound or its metabolite)>!. Therefore, several possible mech-
anisms of toxic action can be involved even in the case of small group of
similar compounds. In our present study, the non-specific interactions are
represented mainly by the bulk properties of the compound whereas the
specific interactions are modeled by the electronic and energetic character-
istics described by the charge distribution, hydrogen bonding and energy
partition of the molecule. Based on above observations, it is significant that
our models show the general trends in the data set and also present key
molecular features that have effect to genotoxicity.

CONCLUSIONS

In this study, the widely used CODESSA program was used to calculate the
structural descriptors for the representation of chemicals. Using these
descriptors, we performed series of computation, i.e. principal component
analysis for the whole data, subset selection, construction and validation of
QSAR models.

Inspection of two models mentioned in ref.!®> and linear models based on
subsets generated by Duplex algorithm and PCA procedure in our present
study leads to following conclusions. First, and what the most important is,
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the results highlighted the use of subset selection in constructing a good,
general QSAR model. The quality of the prediction depends on the data set
used to develop the model and similarity between the training set and the
test set can affect the predictive ability of the models dramatically. Second,
the unbalance of the components in two subsets (i.e. the training set and
the test set) contributed much to the big difference between fit ability and
predictive ability of two models in literature, rather than the over-fitting
supported by the authors!®. In other words, compounds in the test set are
underrepresented in these models, the chemical ‘space’ — or extent of chem-
ical diversity represented by the molecules used to construct model - is en-
riched with rather different structures, as shown intuitively in PCs score
plot. Finally, comparison of linear models based on two subsets generated
using Duplex algorithm and PCA method indicates that the latter seems to
be a better way to select the representative training set and test set in this
work.

With respect to the subsets designed by PCA process, the optimum linear
model contains six descriptors which were selected by BMLR method in
CODESSA program. Mechanistic interpretation shows that these descriptors
have specific physico-chemical meaning and have effect to the mutagenic
action of aromatic and heteroaromatic amines. They mainly encode struc-
tural information related to the size and shape, hydrogen bonding, and the
energy partition ability of the compounds, respectively. The size and shape
of a molecule and the hydrophobicity property are major contributors in
the whole data set’s genotoxicity. The same six descriptors were also used as
inputs to perform nonlinear QSAR studies using SVM and PPR. All models
were cross-validated, and their predictive powers were evaluated on a test
set and an independent validation set. After investigating the results of
models constructed by using BMLR, linear SVM, radial basis function SVM
and PPR method, we concluded that: (i) the six descriptors work together
in a complex way to correlate with the mutation potency of compounds,
(ii) there do exist the nonlinearity among the data set, as is very common
in toxicity topics, and (iii) generally, nonlinear models produced better
results than linear models and PPR model outperforms the rest in the fol-
lowing order: PPR > SVM > linear SVM > BMLR, especially for the test set.
Prediction for the independent validation set of 20 compounds was good
and thus proved the best generalization ability of PPR model. In addition,
PPR is computationally quite feasible and simple and it takes much less
time to convergence compared to SVM model. Considering these, there is
little doubt that utilizing PPR as modeling technique to predict geno-
toxicity is a good choice. In addition, this work also provides a new idea
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and an alternative method to investigate the genotoxicity of the similar
structures with aromatic amines, and can be extended to other toxicity
studies.
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